مقالات شیمی

مقالات شیمی

انواع مقالات مرتبط با شاخه های شیمی

  ترجمه موجود وپایین تر میباشد.
[edit] Flow arrangement
•Countercurrent (A) and parallel (B) flows
•There are two primary classifications of heat exchangers according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is most efficient, in that it can transfer the most heat from the heat (transfer) medium. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.
•For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.
•The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the "log mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.
[edit] Types of heat exchangers
[edit] Shell and tube heat exchanger
•A Shell and Tube heat exchanger
•Shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260°C).[2] This is because the shell and tube heat exchangers are robust due to their shape.
There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube heat exchangers. These include:
•Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as physically possible whilst not exceeding production capabilities. However, there are many limitations for this, including the space available at the site where it is going to be used and the need to ensure that there are tubes available in lengths that are twice the required length (so that the tubes can be withdrawn and replaced). Also, it has to be remembered that long, thin tubes are difficult to take out and replace.
•Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e., the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter. A larger tube pitch leads to a larger overall shell diameter which leads to a more expensive heat exchanger.
•Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
•Tube Layout: refers to how tubes are positioned within the shell. There are four main types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°) and rotated square (45°). The triangular patterns are employed to give greater heat transfer as they force the fluid to flow in a more turbulent fashion around the piping. Square patterns are employed where high fouling is experienced and cleaning is more regular.
•Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid across the tube bundle. They run perpendicularly to the shell and hold the bundle, preventing the tubes from sagging over a long length. They can also prevent the tubes from vibrating. The most common type of baffle is the segmental baffle. The semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles forcing the fluid to flow upward and downwards between the tube bundle. Baffle spacing is of large thermodynamic concern when designing shell and tube heat exchangers. Baffles must be spaced with consideration for the conversion of pressure drop and heat transfer. For thermo economic optimization it is suggested that the baffles be spaced no closer than 20% of the shell’s inner diameter. Having baffles spaced too closely causes a greater pressure drop because of flow redirection. Consequently having the baffles spaced too far apart means that there may be cooler spots in the corners between baffles. It is also important to ensure the baffles are spaced close enough that the tubes do not sag. The other main type of baffle is the disc and donut baffle which consists of two concentric baffles, the outer wider baffle looks like a donut, whilst the inner baffle is shaped as a disk. This type of baffle forces the fluid to pass around each side of the disk then through the donut baffle generating a different type of fluid flow.
•Conceptual diagram of a plate and frame heat exchanger.
•A single plate heat exchanger
•An interchangeable plate heat exchanger applied to the system of a swimming pool
[edit] Plate heat exchanger
•Main article: Plate heat exchanger
•Another type of heat exchanger is the plate heat exchanger. One is composed of multiple, thin, slightly-separated plates that have very large surface areas and fluid flow passages for heat transfer. This stacked-plate arrangement can be more effective, in a given space, than the shell and tube heat exchanger. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasket type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently-bonded plate heat exchangers, such as dip-brazed and vacuum-brazed plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron" or other patterns, where
+ نوشته شده در  2011/7/3ساعت 12:58  توسط صالحی  | 


این ترجمه مبدلهای حرارتی است.

مبدلهای حرارتی
[[; مبدلهای حرارتی :
•فرایند تبادل گرما بین دو سیال با دماهای متفاوت که توسط دیواره جامدی از هم جدا شده اند در بسیاری از کاربرد های مهندسی روی می دهد . وسیله ای را که برای این تبادل به کار می رود مبدل گرمایی میگویند ، و موارد کاربرد آن را در سیستم های گرمایش ساختمان ها ، تهویه مطبوع ، تولید قدرت ، بازیابی گرمای هدر رفته ، و فراوری شیمیایی می توان یافت .ما درفرآیندهای شیمیایی و فیزیکی نیاز به گرم کردن و یا سرد کرئن سیالاتی داریم که مورد استفاده قرار می گیرند. برای تبادل گرمای دو سیال بدون آنکه با هم آمیخته شوند ، نیاز به سطح انتقال حرارت داریم. امروزه در سراسر دنیا کارخانه های فراوانی یافت می شوند که در زمینه ساخت مبدلهای حرارتی فعالیت می کنند . آنها بر اساس نیاز مشتری خود و بر اساس استانداردهای تعیین شده به طراحی و ساخت مبدلهای حرارتی در سایزها و گونه های مختلف مبادرت می ورزند. در زیر به طور خلاصه به بررسی مبدلها و روابط کلی انتقال حرارت در آنها می پردازیم.
•انواع مبدل های گرمایی 
•مبدل های گرمایی معمولاَ بر حسب آرایش جریان و نوع ساخت رده بندی می شوند . ساده ترین مبدل گرمایی مبدلی است که در آن سیالات گـرم و سـرد در جهت های یکسان یا مخالف در یک ساختـار لوله ای هم مرکز (tubular) حرکت می کند .
•نمونه ای از مبدل لوله ای هم مرکز
•در آرایش جریان همسو ( parallel-flow یا concurrent flow) در شکل زیر سیالات گرم و سرد از انتهای یکسان وارد می شوند ، در جهت یکسان جریان می یابند ، و از انتهای یکسان خارج می شوند .در آرایش جریان نا همسو (counter-flow) در شکل سیالات از دو سر متقابل وارد می شوند ، در جهت های مخالف جریان می یابند ، و از دو سر متقابل دیگر خارج می شوند.برای موازنه گرما خواهیم داشت.
•انواع جریان در مبدلها
•T0.0 یا Th1 دمای سیال گرم ورودی
Th2 یا T0.0 دمای سیال گرم خروجی
Tc1 یا T0.0 دمای سیال سرد ورودی
Tc2 یا T0.0 دمای سیال سرد خروجی

سیالات ممکن است دارای جریان عرضی ( عمود بر هم ) نیز باشند این نوع جریان عموما در مبدل های گرمایی لوله ای پره دار بکار می رود.
یکی از انواع مهم مبدل های گرمایی دارای سطح تبادل گرمای بزرگی در حجم واحد است و به آن مبدل گرمایی فشرده می گویند این مبدل ها دارای صفحات یا لوله های پره دار ، با آرایش بسیار فشرده هستند و معمولاَ وقتی به کار می روند که حداقل یکی از سیالات گاز ، و لذا دارای یک ضریب جابجایی کوچک باشد ، لوله ها ممکن است تخت یا دایره ای باشند . مبدلهای گرمایی با صفحات موازی ممکن است پره دار یا کنگره ای باشد و از آنها در حالت تک پاس یا چند پاس استفاده کرد مجراهای جریان در مبدل های گرمایی فشرده معمولاَ کوچک اند و جریان در آنها معمولاَ لایه ای است .اشکال دیگری از مبدهای حرارتی را در شکلها ملاحظه می کنید.
•مبدل گرمایی با جریان همسو 
•در شکل توزیع دمای سیال گرم و سرد در مبدل گرمایی با جریان همسو ( مبدل tubular ) نشان داده شده است . اختلاف دمای ابتدا بزرگ است اما با افزایش x سریعاَ کاهش می یابد و به طور مجانبی به صفر نزدیک می شود باید توجه داشت که در چنین مبدلی دمای خروجی سیال سرد هیچ وقت از دمای خروجی گرم بیشتر نمی شود . در شکل اندیس های 1 و 2 دو سر متقابل را در مبدل نشان می دهد از این قرارداد برای تمام انواع مبدل های گرمایی استفاده می شود .
•نمودار دما در طول مبدل برای جریان همسو و ناهمسو
•طبق تعریف   که در آن U ضریب انتقال حرارت کلی مبدل و A سطح تبادل حرارت در مبدل است.همچنین با کاربرد موازنه انرژی برای عناصر دیفرانسیلی از سیالات گرم و سرد شکل ΔTm را می توان تعیین کرد البته اثبات آن در اینجا بیان نمی شود . هر عنصر دارای طول dx و مساحت سطح انتقال گرمای dA است . برای موازنه های انرژی و تحلیل پیرو آن ، فرض های زیر را در نظر می گیریم :
1- مبدل گرمایی از اطراف خود عایق شده است ،و در این حالت تبادل گرما فقط بین سیالات گرم و سرد است .
2- رسانش محوری در امتداد لوله ها ناچیز است .
3- تغییرات انرژی پتانسیل و جنبشی ناچیز است .
4- گرماهای ویژه سیالات ثابت اند .
5- ضریب کلی انتقال گرما ثابت است .
البته گرماهای ویژه بر اثر تغییرات دما تغییر می کنند ، و ضریب کلی انتقال گرما بر اثر تغییرات خواص سیال و شرایط جریان ممکن است تغییر کند . ولی ، در بسیاری از کاربردها این تغییرات خواص قابل توجهی نیستند و می توان با مقادیر متوسط cpc ,، cph ,h و U کار کرد. برای بدسن آوردن U داریم.

R = مقاومت گرمایی دیواره لوله ها
h = ضریب انتقال حرارت سیال ( سیال گرم و سیال سرد) که از روابط تئوری و تجربی بدست می آید. بسته به این که تغییر فاز داشته باشیم یا نداشته باشیم و هندسه انتقال حرارت . روابطی برای محاسبه آن در کتابهای انتقال حرارت موجود است.
Uexp=ضریب انتقال حرارت کلی برای مبدل با محاسبه تاثیر رسوبات
Upre=ضریب انتقال حرارت بر مبنای تمیز بودن(بدون رسوب) مبدل
Rf=مقاومت گرمایی لوله ها بر اثر رسوب
که معمولا از R ( مقاومت گرمایی لوله ها) صرف نظر میکنیم . در نهایت برای جریان همسو داریم.
ΔT1 = Th1 − Tc1
ΔT1 = Th2 − Tc2
•مبدل گرمایی با جریان ناهمسو 
•توزیع دمای سیالات گرم و سرد در مبدل گرمایی با جریان ناهمسو در شکل زیر نشان داده شده اند . بر خلاف مبدل با جریان همسو ، در مبدل با جریان ناهمسو انتقال گرما بین قسمت های گرم دو سیال در یک سر ، و همچنین بین قسمت های سرد دو سیال در سر دیگر روی می دهد . به همین دلیل اختلاف دما ، در طول مبدل در هیچ جا به بزرگی ناحیه ورودی مبدل با جریان همسو نیست . توجه کنید که دمای خروجی سیال سرد در اینجا می تواند بزرگ تر از دمای خروجی سیال گرم باشد . برای مبدل با جریان ناهمسو اختلاف دما در نقاط انتهایی به صورت زیر تعریف می شود :
•ΔT1 = Th1 − Tc2
ΔT1 = Th2 − Tc1
باید دانست که ، برای دماهای ورودی و خروجی یکسان ، اختلاف دمای میانگین لگاریتمی در جریان ناهمسو از اختلاف دمای میانگین لگاریتمی در جریان همسو بیشتر است .. لذا ، با فرض مقدار U یکسان ، مساحت سطح لازم برای ایجاد آهنگ انتقال گرمای معین q در جریان ناهمسو کمتر از مساحت لازم در جریان همسو است . همچنین در جریان ناهمسو Tc2 می تواند بیشتر Th2 از باشد ولی برای جریان همسو این طور نیست .
البته روشهای دیگری نیز برای تحلیل مبدل ها بکار می رود که در اینجا بیان نمیشود . از جمله روش NTU و روشهای تجربی .
•مبدل های حرارتی پوسته و لوله (shell & tube heat exchangers) 
•نوع متداول دیگر مبدل گرمایی پوسته_ لوله ای است بر حسب تعداد پاس های پوسته و لوله ، این مبدل ها انواع مختلفی دارند و ساده ترین آنها که دارای یک پاس پوسته و یک پاس لوله است در شکل نشان داده شده است . معمولاَ دیوارک هایی نصب می شوند تا با ایجاد تلاطم و آیجاد مؤلفه سرعت عرضی در جریان ضریب جابجایی سیال در سمت پوسته افزایش یابد . مبدل های گرمایی دیوارک دار معمولا با یک پاس پوسته و دو پاس لوله و دو پاس پوسته و چهار پاس لوله تولید می شوند.
•مبدل پوسته لوله تک پاس با جریان همسو
•مبدل پوسته لوله دو پاس با جریان ناهمسو
•مبدل پوسته لوله
•در مبدل های حرارتی پوسته و لوله دارای بفل(صفحات هدایت کننده جریان) ، جریان سمت پوسته به صورت متقاطع با لوله ها در بین دو بفل مجاور جهت داده می شود و در حالیکه از فاصله ما بین دو بفل به فاصله بعدی منتقل می شود ، موازی با لوله ها ، جهت می یابد.
•اهداف اصلی طراحی ، در این مبدل ها در نظر گرفتن انبساط گرمایی پوسته و لوله ها ، تمیز کردن آسان مجموعه ، و در صورت با اهمیت نبودن سایر جنبه ها ، کم هزینه ترین روش ساخت و تولید آنهاست.
•در مبدل های پوسته و لوله با صفحه لوله های ثابت ، پوسته ، به صفحه لوله ، جوش شده است و هیچ گونه دسترسی به خارج از دسته لوله ، برای تمیزکاری وجود ندارد . این انتخاب کم هزینه و دارای انبساط گرمایی محدود است .
•مبدل های پوسته و لوله با دسته لوله U شکل دارای کم هزینه ترین ساختار است ، زیرا فقط به یک صفحه لوله نیاز است. سطح داخلی لوله ها به دلیل خم U شکل تند، نمی توانند با وسایل مکانیکی تمیز شود. در این مبدل ها تعداد زوجی از گذرهای لوله به کار می رود ولی محدودیتی از نظر انبساط گرمایی وجود ندارد.
•چندین طرح ایجاد شده اند که به صفحه لوله امکان می دهند تا شناور باشد(یعنی بتواند با انبساط گرمایی ، حرکت کند ). نوعی کلاسیک از طراحی سر شناور در شکل نشان داده شده است که بیرون کشیدن دسته لوله ها را از پوسته با حداقل جداسازی قطعات، ممکن می سازد. به این نوع مبدل ها برای واحد هایی با تشکیل زیاد رسوب ، نیاز می باشد. هزینه این مبدل ها زیاد است.
•آرایش های مختلف جریان در سمت پوسته و سمت لوله ، بسته به وظیفه گرمایی ( ظرفیت گرمایی) ، افت فشار ، سطح فشار ، تشکیل رسوب ، شیوه های ساخت و هزینه بری ، کنترل خوردگی و مسائل تمیز کاری ،استفاده می شوند. بفل ها در مبدل های پوسته و لوله برای افزایش ضریب انتقال گرما در سمت پوسته و برای نگه داشتن لوله ها استفاده می گردند.
•مزایای مبدل های پوسته و لوله را می شود به شرح زیر نام برد :
•1- در حجم کم ایجاد سطح بزرگی برای انتقال حرارت می کنند.
•2- طراحی مکانیکی خوبی دارند.
•3- روش ساخت تثبیت شده خوبی دارند.
•4- قابلیت استفاده برای دامنه وسیعی از مواد را دارند.
•5- به راحتی تمیز می شوند.
•مبدل های حرارتی صفحه ای 
•مبدل حرارتی صفحه ای اساسا" با توجه به سادگی نت و با توجه به نیازهای صنایع غذائی در دهه ۱۹۳۰ ابداع شدند و طراحی بهینه آن در دهه ۱۹۶۰ با تکامل موثرتر هندسه صفحات ، مونتاژ اجزا و مواد بهینه تر برای ساخت واشرهای مورد استفاده در این نوع مبدل ها کارآمدتر از گذشته مورد بازبینی قرار گرفت و موارد استفاده از آنها به تمامی صنایع راه پیدا کرد و توانسته است از رقیب خود (مبدل های لوله ای ) پیشی بگیرد . به دلیل تنوع بسیار زیاد محدوده های طراحی این نوع مبدل ها که در نوع صفحات و آرایش آنها قابل بررسی است عملا شرکت های سازنده آنها اطلاعات محرمانه طراحی را اعلام نمی کنند .
•مبدل های صفحه ای واشردار تشکیل شده است از تعدادی صفحات نازک با سطح چین دار و یا موج دار که جریان سیال گرم و یا سرد را از هم جدا می کنند .صفحات دارای قطعاتی در گوشه‌ها هستند و به نحوی چیدمان شده اند که دو سیال عامل بصورت یک در میان میان صفحات جریان دارند .طراحی و واشربندی بهینه این امکان را ایجاد می کند که مجموعه از صفحات در کنار یگدیگر تشکیل یک مبدل صفحه ای مناسب را بدهند . .مبدل های حرارتی صفحه ای معمولا "در جریان سیالتی با فشار پائین تر از ۲۵bar و دمای کمتر از ۲۵۰ درجه محدود می شوند .از آنجا که کانالهای جریان کاملا کوچک هستند جریان قوی گردابه ای و توربولانس موجب بزرگ بودن ضرایب انتقال حرارت و افت فشارها می گردد بعلاوه بزرگ بودن تنش برشی موضعی باعث کاهش تشکیل رسوب می شود . واشرها از نشتی سیال به بیرون مبدل جلوگیری می کنند و سیال ها را در صفحات به شکل مورد نظر هدایت می نمایند. شکل جریان عموما" به نحوی انتخاب می شوند که جریان سیالها خلاف جهت یکدیگر باشند .
•شمایلی از مبدل حرارتی صفحه ای
•مبدل های صفحه ای حلزونی یا مارپیچ 
•صفحه ای حلزونی با پیچاندن دو صفحه بلند موازی به شکل یک حلزونی و با استفاده از مندرل و جوش دادن لبه های صفحات مجاور به صورتی که یک کانال را تشکیل دهند ، شکل داده می شود . در هر یک از دو مسیر حلزونی یک جریان ثانویهایجاد می شود که تنتقال حرارت را افزایش و تشکیل رسوب را کاهش میدهد این نوع مبدل های حرارتی بسیارفشرده هستند و طبعا گرن قیمت تمام می شوند .سطح انتقال حرارت برای این مبدل ها درمحدوده ۰٫۵ تا m۲۵۰۰ و فشارکارکرد تا ۱۵ بار و دمای ۵۰۰ سانتیگراد محدوده می شود . این نوع مبدل بیشتر در کاربرد سیال لجن آلود ، مایعات لزج و مایعاتی با ذرات جامد معلق شامل ذرات بزرگ و جریان دو فازی مایع – جامد استفاده می شود . چون این مبدل ها توانایی زیادی در خود تمیز کنی و کم کردن رسوب گیری دارد .
•شمایلی از مبدل حلزونی یا مارپیچ
•انتخاب مواد برای ساخت مبدل های حرارتی 
•طیف گسترده ای از مواد در ساخت مبدل های حرارتی استفاده میگردد. این مواد ممکن است فلزی یا غیر فلزی ( مانند گرافیت ، شیشه ، سرامیک و پلاستیک) باشند. به طور ساده ، فاکتورهای زیر را می‏توان در مورد انتخاب مواد برای مبدل های حرارتی و لوله ها مطرح کرد :
- سازگاری ماده با سیال‏های فرآیند و سایر مواد تشکیل دهنده مبدل ( مانند خوردگی و واکنش با موادی مانند هیدروژن )
- سهولت تولید و ساخت با استفاده از روشهای استاندارد تولید مانند ماشین‏کاری ، ریخته‏گری، نورد و... و روش های جوشکاری
- تحمل شرایط عملیاتی مانند دما و فشار (مواردی مانند استحکام، استحکام خستگی، شکست ترد، سختی، خزش، مقاومت در برابر دما، و ...)
- مسایل مربوط به قیمت و ایمنی از جمله قیمت ساخت، ایمنی و خسارات ناشی از شکست ، هزینه های نگه داری و سرویس
- در دسترس بودن ماده از لحاظ منابع ،
- و مسایل مربوط به اندازه تاسیسات ،و مدت زمان کارآیی و نگه داری و سرویس
- و ...
مواد به طور معمول بر اساس تجربیات پیشین ، تست های خوردگی ، نوشته ها و هندبوک ها و پیشنهاد تولید کنندگان مواد انتخاب می گردند. میزان موفقیت در انتخاب مواد و پروسه ساخت ، در رفتار تاسیسات در عمل ، منعکس میگردد . برای دستیابی به ایمنی و اطمینان کافی ، و کارکرد دایمی و مزایای اقتصادی ، بهتر است انتخاب مواد را بصورت مرحله به مرحله انجام داده و از مرحله طراحی شروع کنیم. و سپس به ترتیب به سراغ ساخت و تولید ، نصب و نگه‏داری برویم. در عمل یک بار ، تاسیسات برای یک بازده معین باید چک گردد. مواد متداول در طراحی مبدل های حرارتی :
1-چدن 2- فولاد کربن دار 3- آلیاژهای فولاد
4- فولاد ضد زنگ 5- آلومینیم و آلیاژهای آن 6- مس و آلیاژهای آن
7- نیکل 8- تیتانیوم 9- زیرکونیم
10- تانتالیوم 11-گرافیت 12- شیشه
13- تفلون 14-سرامیک
•رسوب در مبدل ها 
•سوب زدائی در مبدلهای حرارتی یکی از پرهزینه ترین مسائل در تعمیر و نگهداری مبدلهاست که باعث اتلاف سرمایه و همچنین زمان می شود . بطور مثال هزینه های ناشی از ایجاد رسوب در صنایع کشور آمریکا سالانه به ٥ میلیارد دلار می رسد که هزینه هنگفتی را بر صنایع تحمیل می کند. ایجاد رسوب بر روی سطوح انتقال حرارت باعث کاهش نرخ انتقال حرارت و همچنین افزایش افت فشار می گردد و لذا رسوب زدائی امری اجتناب ناپذیراست که باعث اتلاف زمان تولید و ایجاد هزینه فراوانی می گردد.
•محاسبات انواع مبدلها 
•اصول کلی محاسبه برای مبدلها همان اصول بیان شده در قبل است . یعنی یافتن اختلاف دمای لگاریتمی و ضریب کلی انتقال حرارت با استفاده از ابعاد و شرایط کاری مبدل و سیالهای مورد استفاده و در نهایت انتخاب نوع و آرایش مبدل ها . در مورد انواع مبدلها روابط خوبی برای محاسبات موجود است که می توان با مراجعه به کتاب ها و اطلاعات کارخانه سازنده به آنهادسترسی پیدا کرد.
از انواع دیگر مبدل ها می توان به مبدل های هوا هوا - مبدل های بلوکی - مبدلهای پره ای اشاره کرد. در لینک زیر کتابس موجود است که محاسبات برخی مبدلها در آن آورده شده است

1)در یک دیگ بخار از نوع آتش در لوله ،با جریان محصولات گرم احتراق در لوله های جدار نازک، آبی که روی لوله ها جریان دارد جوش می آید.در زمان نصب،ضریب کلی انتقال گرما 400w/m2.k است.پس از یک سال کار سطوح داخلی و خارجی به ترتیب با ضریب گرفتگی0.0015m2.k/w و0.0005m2.k/w رسوب گرفته اند.آیا وقت تمیز گردن سطوح لوله های دیگ بخار فرا رسیده است؟
•2)از لوله ی فولادی k=50w/m.k با قطر داخلی 20mm و قطر خارجی 26mm ، برای انتقال گرما از گازهای گرمی که روی لوله جریان دارد(hh =200w/m2.k)به آب سردی که در لوله جریان دارد(hc=8000w/m2.k)استفاده شده است.ضریب کلی انتقال گرما در سمت سرد ،uc ،چقدر است؟برای تقویت انتقال گرما ،16 پره یمستقیم با مقطع مستطیلی در امتداد سطح خارجی لوله به طور طولی نصب می شود.پره ها در پیرامون لوله به فواصل مساوی قرار گرفته اند.هر پره دارای ضخامت 2mm و طول 15mm است . ضریب کلی انتقال گرمای متناظر ،uc ،چقدر است ؟
•3)آب با آهنگ 45500kg/h در مبدل گرمایی ، که دو پاس پوسته وهشت پاس لوله دارد ومساحت سطح کل آن 925m2 است،از 80 درجه ی سانتی گراد تا 150 درجه ی سانتی گراد گرم می شود.خواص ترمو فیزیکی گاز های گرم تقریبا مانند خواص هوایی است که با 35 در جه سانتی گراد وارد و با 175 درجه سانتی گراد خارج می شود. ضریب کلی انتقال گرما را بیابید.
•4)گرمکن آب تغذیه ی دیگ بخار از نوع مبدل گرمایی پوسته-لوله ای است ،یک پاس پوسته ودو پاس لوله دارد.مبدل دارای 100 لوله ی جدار نازک ، هر کدام به قطر 20mm و به طو ل 2m (برای هر پاس ) ، است در کارکرد عادی آب با آهنگ 10kg/s با دمای 290k وارد و با چگالش بخار آب اشباع در 1atm روی سطح خارجی لو له ها گرم می شود ،ضریب جابجایی چگالش بخار آب اشباع 10000w/m2.k است.دمای خروجی آب را بیابید.
+ نوشته شده در  2011/7/3ساعت 12:56  توسط صالحی  | 

•یونهای منفی در محلولهای آبی توسط جاذبه یونها و اتمهای هیدروژن مولکول آب ، آبپوشیده می‌شوند. این عمل "هیدراتاسیون" یا "آبپوشی یونها" نامیده می‌شود. این جاذبه‌ها در بعضی موارد مثلا در یون سولفات ممکن است یک یا چند پیوند هیدروژنی باشد. آبپوشی یونهای مثبت توسط جاذبه‌های بین یون و زوج الکترونهای غیر مشترک از اتم اکسیژن مولکول آب صورت می‌گیرد.
کیفیت جاذبه بین یونها و مولکولهای آب
•جاذبه بین یونها و مولکولهای آب قوی هستند. در بیشتر موارد هر کاتیون با عده‌ای معین از مولکولهای H2O آبپوشیده می‌شود.
کیفیت اتصال مولکولهای اضافی آب
•مولکولهای اضافی آب با مولکولهای آب متصل به کاتیون یا آنیون پیوند هیدروژنی تشکیل می‌دهند. ولی پیوند مولکولهای آب در لایه‌های بیرونی سست تر است.
عوامل تشکیل جاذبه قوی بین یون و مولکولهای آب
•یونهایی که بار زیاد دارند، اتمهای H یا O مولکولهای H2O را جذب می‌کنند.
•یونهای کوچک موثرتر از یونهای بزرگ هستند، زیرا غلظت بار در یونهای کوچک خیلی بیشتر است.
آبپوشی ترکیبات کووالانسی
•تعدادی از ترکیبات کووالانسی فلزات در محلولهای آبی ، یونهای آبپوشیده تولید می‌کنند. مثلا ترکیبات برلیوم ، به صورت خالص ، کوالانسی هستند. همان عاملی که بطور عمده موجب کووالانسی بودن ترکیبات بریلیوم می‌شود (نسبت زیاد بار یونی به اندازه یون) ، تشکیل یونهای آبپوشیده خیلی پایدار را نیز سبب می‌شود.
آنتالپی آبپوشیده یا هیدراتاسیون
•تشکیل هر پیوندی همواره انرژی آزاد می‌کند و گسسته شدن پیوند همواره انرژی لازم دارد. انرژی آزاد شده در یک فرآیند فرضی که در آن یونهای آبپوشیده از یونهای گازی تشکیل می‌شوند، آنتالپی آبپوشی آن یونها نامیده می‌شود.

در این واکنش 684.1- =H است.
وابستگی آنتالپی آبپوشی به غلظت
•مقدار آنتالپی آبپوشی به غلظت محلول نهایی بستگی دارد. اگر غلظت محلول داده نشود (مانند مورد بالا) ، فرض می‌شود که تغییر آنتالپی مربوط به فرآیند آبپوشی یونها تا بالاترین حد ممکن است. درجه بالای آبپوشی فقط در محلولهای بسیار رقیق مشاهده می‌شود و مقادیر H مربوط به آن را "آنتالپی آبپوشی در رقت بینهایت" می‌نامیم.
آنتالپی آبپوشی و نیروهای جاذبه
•مقدار آنتالپی آبپوشی مبین قدرت نیروهای جاذبه بین یونها و مولکولهایی از آب است که آنها را آبپوشی می‌کنند. اگر مقدار آنتالپی زیاد و منفی باشد (که به معنای آزاد شدن انرژی زیاد است) ، نشانه این است که یونها بشدت آبپوشیده شده‌اند.
یونهای آبپوشیده و محلول نمکها
•یونهای آبپوشیده غالبا در جامدات بلورین که از تبخیر محلولهای آبی نمکها حاصل می‌شوند، باقی می‌مانند.
•مولکولهای آب می‌توانند به دو صورت دیگر در یک بلور آبدار وجود داشته باشند. یکی آن که بدون پیوستن با یون معینی مکانهایی را در ساختار بلور اشغال کنند (مثلا در BeCl2.2H2O). دیگر آن که بین لایه‌ها یا در حفره‌های ساختار بلور قرار گیرند (مثلا در زئولیتها که سیلیکاتهای آبدار هستند).
+ نوشته شده در  2011/7/2ساعت 20:20  توسط صالحی  | 


انیم واسه هما جون

پیل سوختی یک مبدل  به  است. این تبدیل مستقیم بوده و بنابراین از بازدهٔ بالایی برخوردار است. در واقع می‌توان گفت که در این تبدیل از عمل عکس الکترولیز آب استفاده می‌گردد، به عبارت دیگر از واکنش بین هیدروژن و اکسیژن، آب، حرارت و الکتریسیته تولید می‌گردد. هر سلول در پیلهای سوختی از سه جزء آنُد، کاتُد و الکترولیت تشکیل شده‌است.
•پیل‎‎‎‎‎‎‎‎‎های سوختی فن‌آوری جدیدی برای تولید انرژی هستند که بدون ایجاد  و صوتی، از ترکیب مستقیم بین سوخت و اکسیدکننده،  با بازدهی بالا تولید می‎‎‎‎کنند. تولید مستقیم الکتریسیته جایگزینی برای چرخه کارنو جهت تبدیل  حاصل از سوخت به  و مکانیکی و در نهایت الکتریسیته می‎‎باشد که اتلاف انرژی را به حداقل ممکن می‌رساند و به بازدة تئوری دست پیدا می‌کنیم. در پیل‌های سوختی اکسید جامد)سرامیکی(اکسید سرامیک () رسانای یون در الکترولیت است و از اهمیت بسزایی برخوردار است. این پیل در دمای بین ۶۰۰ تا ۱۰۰۰ درجه سانتیگراد کار می‌کند و با بازده در حدود ۶۰ درصد، توان الکتریکی معادل ۱۰۰ مگاوات دارد. در حال حاضر تعداد زیادی از محققان روی جنبه‌های مختلف پیل سوختی ، جهت بهبود خواص پیل کار می‌کنند. برای این کار روی خواص الکترودها و الکترولیت که مهم‌ترین قسمت‌های پیل SOFC می‌باشند را بهینه سازی می‌کنند و روی عناصر و مواد تشکیل دهنده آنها مطالعه انجام می‌دهند.
پیل‌های سوختی در ایران باستان
•اعتقاد بر این است که  در فاصله سالهای ۲۵۰ ق.م تا ۲۲۴ پ.م در تیسفون ساخته شد. این باتریها به باتری‌های بغداد مشهورند. شرکت جنرال الکتریک این باتریها را با روش تعیین عمر کربنی (به انگلیسی: Radiocarbon dating) شبیه سازی کرده است. معلوم شده است که قدمت این پیلها به ۲۰۰ سال پیش از میلاد می‌رسد. این پیلها دارای بدنهٔ بیرونی از جنس [[ارتن ور بوده که حاوی میله‌ای آهنی است و به وسیلهٔ بخشی از بدنهٔ  (میلهٔ آهنی درون استوانهٔ مسی) ایزوله شده است. زمانی که درون محفظه با محلولی الکترولیت مانند آبلیمو پر شود، این وسیله جریان الکتریکی خفیفی تولید می‌کند. این احتمال وجود دارد که این وسیله برای آبکاری جواهر به کار می‌رفته است.
•سند دیگری که دال بر اختراع  توسط اشکانیان است توسط باستان شناس آلمانی  به دست آمد. وی که در سال ۱۹۳۸ ادارهٔ  را به عهده داشت، در زیر زمین این موزه به جعبه‌ای برخورد که اشیای عجیبی در خود داشت. او پس از تحقیقاتی به این نتیجه رسید که این وسیله شبیه یک باتری مدرن است. او در مقاله‌ای این مطلب را منتشر کرد و از این وسیله با عنوان باتری باستانی یاد کرد که برای آبکاری و انتقال لایه‌ای از طلا یا نقره از سطحی به سطح دیگر به کار می‌رفته است.
•این تئوری بعدها توسط دانشمندان دیگری به بوته آزمایش سپره شد. ویلارد گری، مهندس برق شرکت جنرال الکتریک در ایالت ماساچوست، پس از مطالعهٔ مقالهٔ کونیگ تصمیم گرفت باتری بغداد را بازسازی کند. وی درون کوزهٔ سفالین را با ، سرکه یا محلول  پر کرد و موفق به تولید ولتاژ حدود ۱٫۵ تا ۲ ولت شد. بعدها دکتر اگبرشت، مصر شناس مشهور در سال ۱۹۷۸ نمونه‌ای از باتریهای بغداد را بازسازی کرد و آن را با آب انگور پر نمود و توانست ولتاژ ۰٫۸۷ ولت تولید کند. وی از این پیلها برای طلاکاری یک پیکرهٔ نقره‌ای استفاده کرد. نمونه‌های بیشتری از این باتری‌های باستانی در سال ۱۹۹۹ توسط دانشجویان دکتر Marjorie Senechal، استاد ریاضیات و تاریخ علم در Smith College ماساچوست، ساخته شد. آنها با پر کردن کوزهٔ آن با سرکه قادر به تولید ولتاژ ۱٫۱ ولت بودند. علاوه بر تئوری استفاده از این باتریها برای آبکاری فلزها، تئوری‌های دیگری مبنی بر استفادهٔ پزشکی یا موارد دیگر داده شده" (برای اطلاعات بیشترمی توانید به اصل کتاب مراجعه کنید.)
تاریخچه پیل‌های سوختی
•تاریخچه این پیل‌ها به دو دوره متمایز تقسیم می‌شود : دوره اول که حدود صد سال طول کشید، از سال ۱۸۳۹ با ساخت اولین پیل سوختی با الکترولیت اسید  توسط آقای گرو آغاز گردید. با تلاش دانشمندان بزرگی مانند جکس، ، مون و همکاران و شاگردان آنها منجر به درک علمی از پیل سوختی و شنا‎‎‎‎‎‎خت تنگناهای این فن‌آوری تا سال ۱۹۴۰ گردید.
•دوره دوم از سال ۱۹۴۰ آغاز می‌شود که بین سالهای ۱۹۵۰ تا ۱۹۶۰ نمونه‌های تحقیقاتی متعددی از پیل‌های سوختی توسط شرکت‌های بزرگی مانند جنرال الکتریک با ظرفیت۰۲/۰ وات الی ۱۵ وات ساخته شد. اما هنوز این ظرفیت برای کاربردهای فنی و صنعتی مورد نظر، کافی و قابل قبول نبود. تا اینکه درسال ۱۹۶۵ یک واحد پیل سوختی با ظرفیت یک کیلو‎‎‎وات توسط شرکت جنرال الکتریک به منظور استفاده در ماهواره گمینی۵، ساخته شد و توجه دانشمندان را به خود جلب نمود. این پیل سوختی با ولتاژ ۲۵ ولت و شدت جریان خروجیA ۴۰ آمپر توانست در طول ۷ پرتاب ماهوارة گمینی ۵، انرژی برابر با ۵۱۹ کیلووات ساعت طی بیش از ۸۴۰ ساعت پرواز را تامین کند. بدین ترتیب معلوم گردید که پیل‌های سوختی می‌توانند برای بسیاری از مقاصد هوا - فضا مناسب بوده و انرژی مورد نیاز آنها را به صورت پیوسته و پایدار تامین کنند. این امر موجب گردید تا در سراسر جهان روی توسعة دانش فنی و تکنولوژی ساخت پیل‌های سوختی سرمایه‎‎گذاری‌های بزرگی صورت گیرد. امروزه نیز تحقیقات وسیعی در جهت ارتقاء ظرفیت، کاهش هزینه‌های ساخت و بهره ‎‎بر‌داری و توسعة ویژگی‌های کاربردی پیل‌های سوختی در جریان می‌باشد. برق خروجی از پیل‌های سوختی جریان مستقیم (DC) است. بنابراین برای مصرف ‎‎کننده‌های جریان متناوب از مبدل‌های DC به AC استفاده می‌کنند. از پیل‌های سوختی می‌توان برای تامین انرژی الکتریکی مورد نیاز در مناطقی که دور از شبکه‌های سراسری انتقال و توزیع برق هستند و نیز در ایستگاه‌های ماهواره‌ای و مخابراتی وغیره نیز به طور رضایت‌بخشی استفاده نمود .
انواع پیل سوختی
•پیلهای سوختی در انواع زیر موجود می‌باشند: پیل‌های سوختی براساس نوع الکترولیت استفاده شده در آن‌ها به پنج نوع اصلی طبقه بندی می‌شوند.
•پیل سوختی الکترولیت پلیمر یا غشاء مبادله کننده پروتون (PEFC)
•پیل سوختی قلیایی (AFC)
•پیل سوختی اسید فسفریک (PAFC)
•پیل سوختی کربنات مذاب (MCFC)
•پیل سوختی اکسید جامد (SOFC)
•لازم به ذکر است که پیل سوختی متانول مستقیم (DMFC)۶ از خانوادة پیل سوختی PEFC است. پیل‌های سوختی بر اساس دمای عملکرد، دارای دامنة دمایی از ۸۰ برای (PEFC‎) تا ۱۰۰۰ برای (SOFC) می‌باشند. پیل‌های سوختی دمای پایین (PEFC ،PAFC ،AFC) دارای حامل‌های یونیH+ ویا OH- هستند که انتقال یون از میان الکترولیت وانتقال الکترون‌ها از طریق مدار خارجی را به عهده دارند، و در پیل‌های سوختی دمای بالا مانند الکترولیت کربنات مذاب (MCFC) و الکترولیت اکسید جامد (SOFC)، جریان الکتریکی به ترتیب از طریق یون‌هایCO۳۲- و O۲- انتقال می‌یابد. در پیل‌های سوختی اکسید جامد (SOFC) یا سرامیکی رسانش ‎یون در الکترولیت معمولاً در دمای بین ۶۰۰ تا ۱۰۰۰ درجه سانتیگراد انجام می‌شود.
•مزایای پیل‌های سوختی بطور کلی عبارت‌اند از:
•بازده بالا
•سازگاری با محیط زیست
•سادگی سیستم از نظر تعمیر ونگهداری
•تنوع در سوخت مصرفی
•عدم آلودگی صوتی به سبب نداشتن قسمت‌های متحرک
•طراحی و ساخت توان‌های کوچک (میلی وات ) تا بزرگ (مگاوات)
•امکان استفاده از سوختهای فسیلی و پاک، مدولار بودن
•قابلیت تولید هم‌زمان حرارت و الکتریسیته و استفاده در کاربردهای تولید غیرمتمرکز انرژی
•به مواد بیشتر و فرآیندهای سریعتری نسبت به دیگر پیل‌ها نیاز دارد.
•ممکن است در مدت طولانی کار، گرما مشکلاتی چون ناسازگاری عناصر و افت انرژی را موجب شود.
•در صورت استفاده از سوخت ناخالص، کار و گرمای بیش از حد موجب رسوب کربن و در ‎‎‎‎نهایت مسمومیت پیل می‌گردد.
مزایای پیل سوختی اکسید جامد
•به علت عملکرد دمایی بالا دارای بیشترین راندمان نسبت به سایر پیل‌های سوختی می‌باشد.
•از گرمای تولید شده می‌توان برای افزایش بازدهی مجدد استفاده نمود.
•امکان بازسازی درونی سوخت به خاطر عملکرد دمایی بالا وجود دارد.
•نیازی به کاتالیستهای گران قیمت ندارد.
•برای استفاده از سوختهای مختلف نیازی به مبدل‌های سوخت نیست.
•از آنجاییکه پیل سوختی اکسید جامد دارای الکترولیت جامد است مشکل خوردگی مواد کم می‌باشد .
•برای ساخت اجزای پیل می‌توان از فن‌آوری لایه نازک استفاده نمود. ولی در پیل‌های سوختی با الکترولیت مایع چنین امری دست نیافتنی است.
•پیل سوختی اساساً وسیله ای است که سوخت (مانند هیدروژن، متانول، گاز طبیعی، بنزین و...) و اکسیدان (مانند هوا و اکسیژن) را به برق، آب و حرارت تبدیل می‌کند. به عبارت دیگر پیل سوختی شبیه یک باطری بوده ولی بر خلاف باطری نیاز به انبارش (شارژ) ندارد. تا زمانی که سوخت و هوای مورد نیاز پیل تأمین شود، سیستم کار خواهد کرد. پیل‌های سوختی می‌توانند سوخت‌های حاوی هیدروژن مانند متانول( Methanol )، اتانول ( Ethanol) ، گاز طبیعی ( Natural Gas ) و حتی بنزین و گازوئیل را مورد استفاده قرار دهند. بطورکلی در سوخت‌های هیدروکربوری، هیدروژن توسط یک دستگاه اصلاحگر سوخت ( Fuel Reformer )، از آنها جدا شده و بکار گرفته می‌شود. پیل‌های سوختی در کاهش آلودگی محیط زیست نقش بسزائی داشته و بخاطر عدم بکارگیری قطعات مکانیکی زیاد، ایجاد آلودگی صوتی نیز نمی‌نماید. علاوه بر آن سیستم پیل سوختی از کارائی نسبتاً بالائی نسبت به موتورهای احتراق درونسوز برخوردار است. بحران انرژی در سالهای ۱۹۷۳ و ۱۹۹۱ و آلودگی فزاینده محیط زیست، کشورهای صنعتی را بر آن داشت تا جهت استفاده از سیستم‌هایی با راندمان بالا و سازگار با محیط زیست سرمایه گذاری کلانی نمایند. سیستم‌های پیل سوختی از جمله تکنولوژیهای پیشرفته ایست که مصارف غیر نظامی آن با توانهای میلی وات تا مگا وات موضوع تحقیق شرکتهای تولید نیرو، خودرو سازی و نیز شرکتهای نفتی قرار گرفته‌است. پیل سوختی مجموعه‌ای از الکترولیت، الکترودها و صفحات دو قطبی است. در پیل سوختی(به‌عنوان مثال نوع الکترولیت پلیمر جامد)، هیدروژن از آند و اکسیژن از کاتد وارد می‌شوند. هیدروژن الکترون خودرا در آند از دست داده و بصورت پروتن از طریق الکترولیت به سمت کاتد حرکت می‌کند. الکترون نیز از طریق مدار خارجی به سوی کاتد هدایت می‌شود. اکسیژن با دریافت الکترون و پروتون به آب تبدیل می‌شود. حرکت الکترون از آند به کاتد جریان برق را به وجود می‌آورد که قابل استفاده در وسایل برقی است .آب حاصل در کاتد می‌تواند مورد استفاده مجدد قرار گیرد.
+ نوشته شده در  2011/7/1ساعت 19:59  توسط صالحی  | 

•Fluid flow simulation for a shell and tube style exchanger; The shell inlet is at the top rear and outlet in the foreground at the bottom
•A shell and tube heat exchanger is a class of heat exchanger designs.[1][2] It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this type of heat exchanger consists of a shell (a large pressure vessel) with a bundle of tubes inside it. One fluid runs through the tubes, and another fluid flows over the tubes (through the shell) to transfer heat between the two fluids. The set of tubes is called a tube bundle, and may be composed by several types of tubes: plain, longitudinally finned, etc.
[edit] Theory and Application
•Two fluids, of different starting temperatures, flow through the heat exchanger. One flows through the tubes (the tube side) and the other flows outside the tubes but inside the shell (the shell side). Heat is transferred from one fluid to the other through the tube walls, either from tube side to shell side or vice versa. The fluids can be either liquids or gases on either the shell or the tube side. In order to transfer heat efficiently, a large heat transfer area should be used, leading to the use of many tubes. In this way, waste heat can be put to use. This is an efficient way to conserve energy.
•Heat exchangers with only one phase (liquid or gas) on each side can be called one-phase or single-phase heat exchangers. Two-phase heat exchangers can be used to heat a liquid to boil it into a gas (vapor), sometimes called boilers, or cool a vapor to condense it into a liquid (called condensers), with the phase change usually occurring on the shell side. Boilers in steam engine locomotives are typically large, usually cylindrically-shaped shell-and-tube heat exchangers. In large power plants with steam-driven turbines, shell-and-tube surface condensers are used to condense the exhaust steam exiting the turbine into condensate water which is recycled back to be turned into steam in the steam generator.
[edit] Shell and tube heat exchanger design
•There can be many variations on the shell and tube design. Typically, the ends of each tube are connected to plenums (sometimes called water boxes) through holes in tubesheets. The tubes may be straight or bent in the shape of a U, called U-tubes.
•In nuclear power plants called pressurized water reactors, large heat exchangers called steam generators are two-phase, shell-and-tube heat exchangers which typically have U-tubes. They are used to boil water recycled from a surface condenser into steam to drive a turbine to produce power. Most shell-and-tube heat exchangers are either 1, 2, or 4 pass designs on the tube side. This refers to the number of times the fluid in the tubes passes through the fluid in the shell. In a single pass heat exchanger, the fluid goes in one end of each tube and out the other.
•Surface condensers in power plants are often 1-pass straight-tube heat exchangers (see Surface condenser for diagram). Two and four pass designs are common because the fluid can enter and exit on the same side. This makes construction much simpler.
•There are often baffles directing flow through the shell side so the fluid does not take a short cut through the shell side leaving ineffective low flow volumes.
•Counter current heat exchangers are most efficient because they allow the highest log mean temperature difference between the hot and cold streams. Many companies however do not use single pass heat exchangers because they can break easily in addition to being more expensive to build. Often multiple heat exchangers can be used to simulate the counter current flow of a single large exchanger.
•agung ganteng banget
[edit] Selection of tube material
•To be able to transfer heat well, the tube material should have good thermal conductivity. Because heat is transferred from a hot to a cold side through the tubes, there is a temperature difference through the width of the tubes. Because of the tendency of the tube material to thermally expand differently at various temperatures, thermal stresses occur during operation. This is in addition to any stress from high pressures from the fluids themselves. The tube material also should be compatible with both the shell and tube side fluids for long periods under the operating conditions (temperatures, pressures, pH, etc.) to minimize deterioration such as corrosion. All of these requirements call for careful selection of strong, thermally-conductive, corrosion-resistant, high quality tube materials, typically metals, including copper alloy, stainless steel, carbon steel, non-ferrous copper alloy, Inconel, nickel, Hastelloy and titanium[3]. Poor choice of tube material could result in a leak through a tube between the shell and tube sides causing fluid cross-contamination and possibly loss of pressure.
+ نوشته شده در  2011/6/30ساعت 13:2  توسط صالحی  |